
1

Db2Night Show

Favorite Db2 Performance and Optimization
Features V9-V12

Tony Andrews tandrews@themisinc.com
Twitter @tonyandrews12

• Does the optimizer actually rewrite some coded predicates. At times, yes!

• Does the optimizer actually rewrites the query. At times, yes!

• Learn many of the optimization features from V9 through V12

• What is transitive closure? What is safe query optimization? What are
filter factors? What is global query optimization? What is safe query
optimization? SQL Pagination? Other questions?

Agenda

2

V9 – Correlate/De-Correlate
SELECT E.EMPNO, E.LASTNAME, E.SALARY

FROM EMP E

WHERE E.EMPNO IN

(SELECT EP.EMPNO

FROM EMPPROJACT EP

WHERE EP.PROJNO = 'IF2000')

EMPNO LASTNAME SALARY

------ ----------- ------------

000030 KWAN 38250.00

000140 NICHOLLS 28420.00

DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Q
B
K

MET
H

TNAME A
TYP

E

M
COL

S

ACCESS
NAME

IX
ONLY

S
C
U

S
C
J

S
C
O

S
C
G

P
R
F

CO
L

FN

QB TYP

1 0 DSNWFQB(02) R 0 S SELECT

1 1 EMP I 1 XEMP1 N SELECT

2 0 EMPPROJACT I 1 XEMPPROJACT1 Y NCORSUB

2 3 Y Y NCORSUB

V9 – Optimizer will sometime rewrite a correlated subquery to a non-
correlated subquery and vice versa.

Notes: This query stayed as non-correlated.
Subquery put entries into a workfile (DSNWFQB1) ➔ dataset workfile

specific to query block 1

3

V9 – Correlate/De-Correlate EXISTS
SELECT E.EMPNO, E.LASTNAME, E.SALARY
FROM EMP E
WHERE EXISTS

(SELECT 1
FROM EMPPROJACT EP
WHERE E.EMPNO = EP.EMPNO

AND EP.PROJNO = 'IF2000')

Correlated Subquery gets the

same results.

EMPNO LASTNAME SALARY

------ ----------- ------------

000030 KWAN 38250.00

000140 NICHOLLS 28420.00

DSNE610I NUMBER OF ROWS DISPLAYED IS 2

Q
B
K

MET
H

TNAME A
TYP

E

M
COL

S

ACCESS
NAME

IX
ONLY

S
C
U

S
C
J

S
C
O

S
C
G

P
R
F

CO
L

FN

QB TYP

1 0 DSNWFQB(02) R 0 S SELECT

1 1 EMP I 1 XEMP1 N SELECT

2 0 EMPPROJACT I 1 XEMPPROJACT1 Y NCORSUB

2 3 Y Y NCORSUB

Optimizer Query

Rewrite

The other way to eliminate duplicates is by coding the SQL using a Correlated
Subquery with the Exists clause.

Note: Optimizer rewrote the correlated exists logic to a non-correlated
subquery (exactly like the previous page)

4

Predicate Generation Through Transitive Closure

If A must equal B

And A must be RED,

Then B must also be RED.

The Premise

5

5

Predicate Generation Through
Transitive Closure Cont’d

Index XDEPT1 on DEPTNO

Index XDEPT3 on ADMRDEPT

Single Table Db2 Generated Predicate

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’ ;

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’

AND DEPTNO = ‘A00’ ;

XDEPT1 index chosen !

6

7

Predicate Transitive Closure

SELECT

FROM DEPT

WHERE DEPTNO = ADMRDEPT

AND ADMRDEPT = ‘A00’ ;

Note: Index on

DEPTNO chosen

Visual Explain will show all predicates used by the optimizer, both those included in

the query and those generated by predicate transitive closure.

Why does the optimizer do the predicate transitive closure? It provides the optimizer

a possible other index to evaluate.

In List Predicate Transitive Closure

SELECT …….
FROM EMP E INNER JOIN

DEPT D ON E.DEPTNO = D.DEPTNO
WHERE E.DEPTNO IN (‘A00’, ‘B01’, ‘C11’)

AND D.DEPTNO IN (‘A00’, ‘B01’, ‘C11’)
AND D.DEPTNO > ?
AND E.DEPTNO IN

(SELECT DEPTNO
FROM …..
WHERE …)

Original

V10 Optimizer adds this predicate

All predicates will get transitive closure except the LIKE predicate. So developers need to

code it themselves.

8

Single Matching Indexing With ‘Or’ Predicates

• Scrolling Performance Issues

• AKA Pagination

• Complex ‘Or’ Predicate logic

SELECT ...
FROM EMPLOYEE
WHERE (LASTNAME = ‘SMITH’

AND FIRSTNME = ‘MIKE’
AND MIDINIT > ‘R’)

OR
(LASTNAME = ‘SMITH’

AND FIRSTNME > ‘MIKE’)
OR (LASTNAME > ‘SMITH’)
ORDER BY LASTNAME, FIRSTNME,

MIDINIT
FETCH FIRST 20 ROWS ONLY;

Prior to V10, a way to get better performance from these is to rewrite them as Boolean type
predicates. See below.

A better rewrite for older versions: Predicates AND’d together (Boolean) are typically more
efficient then predicates OR’d together.
SELECT ...
FROM EMPLOYEE
WHERE ((LASTNAME = ‘SMITH’

AND FIRSTNME = ‘MIKE’
AND MIDINIT > ‘R’)

OR
(LASTNAME = ‘SMITH’
AND FIRSTNME > ‘MIKE’)

OR (LASTNAME > ‘SMITH’)
)

AND LASTNAME >= ‘SMITH’
ORDER BY LASTNAME, FIRSTNME, MIDINIT
FETCH FIRST 20 ROWS ONLY;

9

What we used to code to overcome …

• Two Boolean Predicates now

• Much greater likely hood of Matching Index
(although MCOLS would equal 1)

SELECT ...
FROM EMPLOYEE
WHERE ((LASTNAME = ‘SMITH’

AND FIRSTNME = ‘MIKE’
AND MIDINIT > ‘R’)

OR
(LASTNAME = ‘SMITH’
AND FIRSTNME > ‘MIKE’)

OR (LASTNAME > ‘SMITH’)
)

AND LASTNAME >= ‘SMITH’
ORDER BY LASTNAME, FIRSTNME, MIDINIT
FETCH FIRST 20 ROWS ONLY;

Prior to V10, a way to get better performance from these is to rewrite them as Boolean type
predicates. See below.

A better rewrite for older versions: Predicates AND’d together (Boolean) are typically more
efficient then predicates OR’d together.
SELECT ...
FROM EMPLOYEE
WHERE ((LASTNAME = ‘SMITH’

AND FIRSTNME = ‘MIKE’
AND MIDINIT > ‘R’)

OR
(LASTNAME = ‘SMITH’
AND FIRSTNME > ‘MIKE’)

OR (LASTNAME > ‘SMITH’)
)

AND LASTNAME >= ‘SMITH’
ORDER BY LASTNAME, FIRSTNME, MIDINIT
FETCH FIRST 20 ROWS ONLY;

10

Single Matching Indexing With ‘Or’ Predicates

The Process

• Process the first predicate until
20 rows are met, or end of data

• Process the second predicate
only if needed

• And so on …..

SELECT ...
FROM EMPLOYEE
WHERE (LASTNAME = ‘SMITH’

AND FIRSTNME = ‘MIKE’
AND MIDINIT > ‘R’)

OR
(LASTNAME = ‘SMITH’

AND FIRSTNME > ‘MIKE’)
OR (LASTNAME > ‘SMITH’)
ORDER BY LASTNAME, FIRSTNME,

MIDINIT
FETCH FIRST 20 ROWS ONLY;

Prior to V10: Most likely multi index processing
V10: Matching single index access

11

Single Matching Indexing With ‘Or’ Predicates

NR: Range List Index Scan

Begins first with the 3 matching columns, then the 2, then the one in order to fulfill
the result set. The order in the PLAN_TABLE will be the sequence it has coded in the
SQL. This allows the customer to match the PLAN_TABLE to the SQL. The actual order
of execution will be dependent on the literal values used at runtime.

The DB2 implementation of range-list will re-order the OR conditions at runtime
based upon the literal values. Thus, it is not possible for BIND/PREPARE to know the
order in which these will be executed.

12

V12 – SQL Pagination

The Process

• Code using Row value expression.

SELECT ...
FROM EMPLOYEE
WHERE (LASTNAME, FIRSTNME, MIDINIT) >

(‘SMITH’, ‘MIKE’, ‘R’)
ORDER BY LASTNAME, FIRSTNME, MIDINIT

FETCH FIRST 20 ROWS ONLY;

Also…

SELECT …..
FROM ….
OFFSET n ROWS
FETCH FIRST n ROWS

Available with Db2 12 is data-dependent pagination, which uses row value expressions in a
basic predicate. This enables a query o access part of a Db2 result table based on a logical
key value:

With the additional comparison operators supported with row-value-expression
comparisons, application developers can choose to simplify their SQL and potentially make
their applications more readable. AND… the optimization will most likely take on the the
‘NR’ processing if an ‘ Optimize for n Rows’ or ‘Fetch first n Rows’ is coded. And… if all the
‘OR’ predicates map to the same index.

‘NR’: What is important to understand is how many MATCHCOLS for each ‘OR’ predicate.
The order in the PLAN_TABLE will be the sequence the predicates were coded in the SQL.
This allows us to easily match the PLAN_TABLE to the SQL. The actual order of execution will
be dependent on the literal values used at runtime.

13

In List Direct Table Access (ACCESSTYPE = ‘IN’)

Prior Versions

• ACCESSTYPE = ‘N’
• ACCESSTYPE = ‘R’

V10

• ACCESSTYPE = ‘N’
• ACCESSTYPE = ‘R’
• ACCESSTYPE = ‘IN’ (New). Entries put into

a work file, then NLJ

SELECT ...
FROM EMP
WHERE DEPTNO IN (?, ?, ?, ?, ?)
;

14

With ‘In’ predicates that match indexes, Db2 may choose to process via ACCESSTYPE ‘N’, ‘R’, or now
‘IN’. This all depends on the filter factor for the predicates and how many rows Db2 thinks the
predicate will affect.

ACCESSTYPE ‘N’: An IN-list scan can be thought of as a series of matching index scans with the values
in the IN predicate being used for each successive equal matching index scan. There will be a
matching index scan for each value in the list.
ACCESSTYPE ‘R’: If Db2 thinks that the values in the list will affect a high percentage of rows in the
table (or a high percentage of pages in the table), then it will choose a tablespace scan for processing.

ACCESSTYPE ‘IN’: This was new in V10. Db2 will load the list values into an IN-Memory table and use
that table as the composite table for a nested loop join process. Also shows table type = ‘I’. For
example:

QBLOCKNO PLANNO METHOD CREATOR TNAME ATYPE MCOLS TABLE_TYPE
--

1 1 0 ODYTA DSNIN001 IN 0 I
1 2 1 THEMIS81 EMP I 1 T

The naming convention for the in-memory tables is as follows:
DSNIN indicates that it relates to IN-list.
The number after DSNIN (001) represents the predicate number.
A number in parenthesis represents the query block number.

14

In List Direct Table Access (ACCESSTYPE = ‘IN’)

With ‘In’ predicates that match indexes, Db2 may choose to process via ACCESSTYPE
‘N’, ‘R’, or now ‘IN’. This all depends on the filter factor for the predicates and how
many rows Db2 thinks the predicate will affect.

ACCESSTYPE ‘N’: An IN-list scan can be thought of as a series of matching index scans
with the values in the IN predicate being used for each successive equal matching
index scan. There will be a matching index scan for each value in the list.

ACCESSTYPE ‘R’: If Db2 thinks that the values in the list will affect a high percentage
of rows in the table (or a high percentage of pages in the table), then it will choose a
tablespace scan for processing.

ACCESSTYPE ‘IN’: This is new in V10. Db2 will load the list values into an IN-Memory
table and use that table as the composite table for a nested loop join process. Also
shows table type = ‘I’.

15

In List Direct Table Access (ACCESSTYPE = ‘IN’)

Biggest advantage is with an
‘In’ predicate on the first 2

columns of an index.

• V9 uses only first predicate

• V10 combines both predicates

SELECT ...
FROM EMP
WHERE LASTNAME IN (?, ?, ?, ?)

AND FIRSTNME IN (?, ?, ?)

16

The biggest advantage of this is now even with 2 IN=list predicates, Db2 can make use of in-
memory work files providing tremendous benefits. This would be when the IN-list predicates
represent two or more leading columns of an index. Db2 10 can combine the IN-list
predicates to reduce the number of index getpages and list prefetch operations. Db2 9 and
prior versions could do a 1 column match with multiple In-list predicates, and the other
predicate would show as a screening predicate.

16

In List Direct Table Access (ACCESSTYPE = ‘IN’)

Prior to V10: 1 matching column

V10: Work file loaded for each IN LIST. Then 2 matching columns based on different
combinations.

17

Visual Explain – Sparse Index ‘In List’

SELECT * FROM EMP E

WHERE E.JOB = 'DESIGNER'

AND E.DEPTNO IN

(SELECT P.DEPTNO

FROM PROJ P

WHERE P.MAJPROJ = 'MA2100');

This is a visual explain from the same query shown previously. As you can see, the
visual explain shows a little more detail on the explain information by showing that it
builds what’s called a sparse index for the subquery work file and checks the data in
the file via a nested loop process. This sparse index is built in memory.

File built with data is called DSNWFQB(02) which is a dataset from QB2.

18

V11 Sparse Indexing

WITH X AS

(SELECT DEPTNO,

AVG(SALARY) AS AVG_SAL

FROM EMP

GROUP BY DEPTNO)

SELECT D.DEPTNO,

D.DEPTNAME,

X.AVG_SALARY

FROM DEPT D, X

WHERE D.DEPTNO = X.DEPTNO

Sparse

Index

Seen more especially with table expressions.

Plan_Table
PRIMARY_ACCESSTYPE = ‘T’.

V11 sparse index processing is similar to hash joining on other platforms (Db2 LUW, SQL
Server, Oracle). This is usually a good thing that the optimizer chooses. The index is built
with hashed values in memory (called In-Memory-Data-Cache). Could overflow to a work
file if the entries in the sparse index are too many that overflows the MXDTCACH setting.

The Sparse index gets built at runtime, with the hash matching join being faster than index
lookups on the inner table of the nested loop join. Especially if the join has enough rows
from the outer to inner to "pay back" the build / cost of the sparse index/hash.

This helps especially with table expressions that get ‘materialized’. Always look in the explain
to see if an index was built.

19

Safe Query Optimization

Uncertainties in this query:

• What are the host variable
values ?

• How to generate a good filter
factor without known values ?

• How to generate good filter
factor for range predicates ?

SELECT ...
FROM EMPLOYEE
WHERE DEPTNO IN (?, ?, ?, ?, ?)

AND EMPNO > ?
AND LASTNAME BETWEEN ? AND ?

;

20

It used to be so many optimization steps were based on predicates filter factors:
- Which index
- Order of tables
- Join Type

But now when none of the predicates shows a significant filter factor, the optimizer may
choose based on what it thinks is a safer
and better predictable predicate.

For example: WHERE BIRTHDATE < :HV-BDATE Filter Factor = 18.2%
AND DEPTNO IN Filter Factor = 22.6%

(SELECT DEPTNO
FROM DEPT
WHERE DEPTNAME LIKE’D%’)

In this example, older versions of Db2 would have chosen the index on BIRTHDATE, but
because the filter factor are close, V110 may take the safer route in using the DEPTNO index
because of the uncertainty of a range predicate.

It is often difficult to pick the most optimal access path based on:
- Range Predicates
- Unpredictable RID pool environment
- Use of host variables not knowing the values at runtime
- Non uniform distribution of values for a column

One way to help these situations was to let Db2 know of the values being processed by
either binding with ‘Reopt’, coding dynamic SQL, or hard coding values.

20

Index Include Columns

Features

• Add non-key columns to
unique indexes

• Helps to gain ‘Index Only’
access

• Columns are not part of the
unique constraint

CREATE UNIQUE INDEX XEMP4 ON EMP (COLA, COLB, COLC)
INCLUDE (COLF, COLG)

or

ALTER EMPX1
INCLUDE LASTNAME

;

21

Prior to V10: Any unique constraint required a unique index for enforcement. But only those
columns defining the constraint can be used in the index. A table can have an arbitrary number of
unique constraints, with at most one unique constraint defined as a primary key.

Prior to V10, may have seen something like the following on a table because the EMPNO column was
a unique constraint due to it being the primary key. So another index was created with additional
column(s) to improve certain queries.

Index1 = EMPNO
Index2 = EMPNO, DEPTNO

Following are the steps needed in order to get column(s) included as part of an existing index.

Alter Index with the include clause. This puts the index in page set rebuild pending stage (PSRBD).

ALTER XEMP1 INCLUDE (LASTNAME)
;
COMMIT
;

Rebuild the index, or Reorg the tablespace.
Execute Runstats
Perform any necessary rebinds
Run an explain for verification

Notes: Included column only allowed for unique indexes.
Included columns not allowed with indexes on expressions.
Indexes with an already existing included column cannot have further unique

columns added via the ALTER.

SYSIBM.SYSKEYS shows the included columns.

21

V10 Currently Committed Data – Only committed
data is returned

Handles locking issues due to:
- Insert locks from another process
- Delete locks from another process

Bind Option: CONCURRENTACCESSRESOLUTION
Prepare Option: USE CURRENTLY COMMITTED

What happens when a delete lock in encountered ?
Reader will still get that row if it fits its ‘Where‘ logic.

What happens when an insert lock is encountered:
Reader will not get that row.

-911 SQLCODE

This new feature is supported only as a bind parameter or in a dynamic prepare statement,

and allows access to data that was last committed before a lock would take place. It works

with read processes only, and only when locks take place due to another process executing

inserts or deletes. If another process is taking locks due update executions, the read processes

will be locked as normal.

Using currently committed , only committed data is returned, as was the case previously, but
now read processes do not wait for writers or deleters to release locks. Instead, readers
return data that is based on the currently committed version; that is, data prior to the start
of the write or delete operation.

Using currently committed , only committed data is returned, as was the case previously, but

now read processes do not wait for writers or deleters to release locks. Instead, readers return

data that is based on the currently committed version; that is, data prior to the start of the

write operation.

22

More Stage 1 Predicates

New Stage 1 predicates:

WHERE value BETWEEN COL1 AND COL2

WHERE SUBSTR(COLX, 1, n) = value ➔ From Pos 1

only

WHERE DATE(TS_COL) = value

WHERE YEAR(DT_COL) = value

Db2 11 rewrites some of the more common stage 2 local predicates, including the following predicates,
to an indexable form:

Db2 9 for z/OS delivered the ability to create an index on an expression, which required the developer
or DBA to identify the candidate queries and create the targeted indexes. The Db2 11 predicate rewrites
allow optimal performance without needing to intervene for better performance.

Note: Db2 will only rewrite if there is no index on expression that matches.

Example1:

WHERE SUBSTR(LASTNAME,1,3) = :hv is a stage 2 non indexabe predicate

V11, this becomes:

WHERE LASTNAME = (exp) is a stage 1 indexable (exp is a Db2 computed value for boundaries
of column)

. Example: SUBSTR(LASTNAME,1,3) =‘AND’ becomes LASTNAME BETWEEN ‘AND……’ and ‘ANDzzzzzzz’

Example2:

WHERE SUBSTR(LASTNAME,1,3) <= :hv is a stage 2 non indexabe predicate

V11, this becomes:

WHERE LASTNAME <= (exp) is a stage 1 indexable (exp is a Db2 computed value for
boundaries of column)

. Example: SUBSTR(LASTNAME,1,3) <=‘AND’ becomes LASTNAME <= ‘C1D5C4FFFFFFFFFFFFFFFFFF’

23

More Stage 1 Predicates

WHERE value BETWEEN COL1 AND COL

Example: WHERE ‘2009-01-01’ BETWEEN START_DT

AND END_DT

becomes

WHERE START_DT <= ‘2009-01-01’

AND END_DT >= ‘2009-01-01’

Db2 11 optimizer is now starting to do what developers had to do all these years, and
that is to take many of the stage 2, non indexable predicates and rewrite them more
efficiently. This is a simple standard rewrite the optimizer now takes care of.

Db2 9 for z/OS delivered the ability to create an index on an expression, which
required the developer or DBA to identify the candidate queries and create the
targeted indexes. The Db2 11 predicate rewrites allow optimal performance without

24

More Stage 1 Predicates

WHERE DATE(TS_COL) = value

Example: WHERE DATE(ORDER_TS) = ‘2009-01-01’

becomes

WHERE ORDER_TS BETWEEN

‘2009-01-01-00.00.00.000000’ AND

‘2009-01-01-24.00.00.000000’

Db2 11 optimizer is now starting to do what developers had to do all these years, and
that is to take many of the stage 2, non indexable predicates and rewrite them more
efficiently. This is a simple standard rewrite the optimizer now takes care of.

Db2 9 for z/OS delivered the ability to create an index on an expression, which
required the developer or DBA to identify the candidate queries and create the
targeted indexes. The Db2 11 predicate rewrites allow optimal performance without

25

More Stage 1 Predicates

WHERE YEAR(HIREDATE) = value

Example: WHERE YEAR(HIREDATE) = 2009

becomes

WHERE HIREDATE BETWEEN
‘2009-01-01’ AND ‘2009-12-31’

26

Case Logic

Case logic in predicates

Local predicate Join Predicate

SELECT * SELECT E.EMPNO E.LASTNAME

FROM EMP FROM EMP E, DEPT D

WHERE EDLEVEL = WHERE E.DEPTNO =

CASE ? CASE ?

WHEN ‘HS’ THEN 12 WHEN ‘D’ THEN D.DEPTNO

WHEN ‘CO’ THEN 14 WHEN ‘A’ THEN D.ADMRDEPT

WHEN ‘GR’ THEN 16 END

ELSE 00 END;

CASE expressions are also enhanced to support indexability as shown More common,
complex resolution of code values to their business value are being included in a view
or table expression to be used within a query, rather than using a code table or
dimension table for this purpose. When used in predicates, Db2 V11 can now use
these expressions as indexable, rather than stage 2 predicates as in previous releases.

A CASE expression must be able to be evaluated before.

27

Predicate Pushdown

Db2 11 supports pushdowns into table expressions

OR predicates

SELECT E.EMPNO, E.SALARY,

TEMP.NUM_EMPS

FROM EMP E ,

(SELECT DEPTNO,

COUNT(*) AS NUM_EMPS

FROM EMP

GROUP BY DEPTNO) AS TEMP

WHERE E.DEPTNO = TEMP.DEPTNO

AND (TEMP.DEPTNO LIKE 'C%' OR

TEMP.DEPTNO LIKE ‘D%‘);

Db2 V11 takes the outside predicates and pushes them inside the table expression.
The idea is to apply the predicate before any materialization takes place.

Note1: If EMP E table has any local predicates, then the TEMP local predicate does
not get pushed

28

‘OR COLUMN IS NULL’ Predicates

• Optimizer may now choose
single index access

• V11 is able to choose multi
index access

• May transform to ‘In List’ table
and nested loop join

SELECT ...

FROM DEPT

WHERE MGRNO = ? or MGRNO IS NULL

OR

SELECT ...

FROM DEPT

WHERE MGRNO IN (?, ?) or MGRNO IS NULL

OR

SELECT ...

FROM DEPT

WHERE MGRNO > ? or MGRNO IS NULL
Rewrite V11:

MGRNO IN (?, ?, NULL)

‘OR COLUMN IS NULL’ Predicates

Db2 V11 may now choose single index access for these predicates by rewriting the
predicates as follows:

WHERE MGRNO IN (?, ?, NULL)

OR the query may transform into an ‘In List’ table and nested loop join that was introduced
in V10. This has now been expanded to handle the ‘OR IS NULL’ condition.

The predicate MGRNO > ? or MGRNO IS NULL would at best get milti-index access in
previous version. V11 can now handle this logic with single index access.

29

IN Predicate with OR Predicate

• Prior to V11 Db2 would not
choose multi index access with
an IN predicate

• V11 optimizer may now
choose multi index access

SELECT ...

FROM EMP

WHERE LASTNAME = ?

OR EMPNO IN (?, ?)

Db2 V10 most likely would chose a table space scan with these predicates ‘Ord‘’ together
due to the IN predicate. If the IN predicate was an EQUAL predicate, then it may choose
multi index access,

Db2 V11 will now take into consideration multi index access when ‘Oring’ and IN predicate
with another predicate.

30

Early Out Join Processing

• Now works like a
correlated subquery
where each inner
table probe will
stop after first
match is found

SELECT DISTINCT E.EMPNO, E.LASTNAME
FROM EMP E INNER JOIN

EMPPROJACT EPA
ON E.EMPNO = EPA.EMPNO

One to many relationship between EMP and
EMPPROJACT tables

Previously version of Db2, this was only available when the optimizer actually transformed
an EXISTS subquery to a join.

Duplicates from T2 used to be removed by DISTINCT, in V11 each inner table probe will stop
after 1st match is found.

31

Right Joins ALWAYS Rewritten as LEFT Joins

SELECT D.DEPTNO, D.DEPTNAME,

D.MGRNO, E.FIRSTNME, E.LASTNAME

FROM DEPT D LEFT JOIN EMP E

ON D.MGRNO = E.EMPNO

These 2 queries are logically equivalent

SELECT D.DEPTNO, D.DEPTNAME,

D.MGRNO, E.FIRSTNME, E.LASTNAME

FROM EMP E RIGHT JOIN DEPT D

ON D.MGRNO = E.EMPNO

Whatever table is to the left of LEFT JOIN is what I call the driver table and that is where the
processing starts, The other table is called the NULL SUPPLYING TABLE as it will sends nulls
back for any column referenced if there is not a match on values being joined.

Whatever table is to the right of RIGHT JOIN is the driver table, and the other the NULL
SUPPLYING TABLE. So these two queries are logically equivalent and will return the exact
same rows.

The optimizer will take EVERY right join and rewrite it as a left join. Logically there is never a
need to code right join over left join, and the optimizer takes this into account. There is a
JOIN_TYPE column in the PLAN_TABLE that will show a ‘L for both queries.

32

Left Join to Inner Join Rewrite

SELECT D.DEPTNO, D.DEPTNAME,

D.MGRNO, E.FIRSTNME, E.LASTNAME

FROM DEPT D LEFT JOIN EMP E

ON D.MGRNO = E.EMPNO

WHERE E.JOB = ‘ANALYST’

The first query will gets rewritten as an INNER JOIN

SELECT D.DEPTNO, D.DEPTNAME,

D.MGRNO, E.FIRSTNME, E.LASTNAME

FROM DEPT D INNER JOIN EMP E

ON D.MGRNO = E.EMPNO

WHERE E.JOB = ‘ANALYST’

Once you apply predicate logic on the NULL SUPPLYING TABLE, you are automatically
cancelling out any exception values that are not found on that table, thus making it a straight
inner join. Once the optimizer sees OUTER JOIN and a predicate on the NULL SUPPLYING
TABLE, it gets rewritten as an inner join. JOIN_TYPE = ‘ ‘ in the PLAN_TABLE.

33

The material in this presentation is further developed in the following Themis courses:

DB3052 – Db2 for z/OS Database Performance Tuning

SQ1010 – Dealing With Complex Queries

Cross Platform SQL

DB1037 – Advanced Query Tuning With IBM Data Studio

on z/OS

DB1032 – Db2 for z/OS Optimization Performance

and Tuning

DB1006 – Db2 LUW Query Tuning With IBM Data Studio

Links to these courses may be found at: www.themisinc.com

Tony’s Email: tandrews@themisinc.com

34

Finally! A book of DB2 SQL tuning tips for developers,
specifically designed to improve performance.

DB2 SQL developers now have a handy reference guide with
tuning tips to improve performance in queries, programs and
applications.

Education. Check out

www.amazon.com

35

36

Education. Check Out
www.themisinc.com

• On-site and Public

• Instructor -led

• Hands-on

• Customization

• Experience

• Over 30 DB2 courses

• Over 400 IT courses

US 1-800-756-3000

Intl. 1-908-233-8900

Speaker: Tony Andrews
Company: Themis Inc.
Email Address:
tandrews@themisinc.com

Thank you for attending! I hope you learned something new today!

Thank you Db2Night Show!

37

